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Abstract

We present a class of energy stable, high-order finite-difference interface closures for grids with step resolution changes.
These grids are commonly used in adaptive mesh refinement of hyperbolic problems. The interface closures are such that
the global accuracy of the numerical method is that of the interior stencil. The summation-by-parts property is built into
the stencil construction and implies asymptotic stability by the energy method while being non-dissipative. We present
one-dimensional closures for fourth-order explicit and compact Padé type, finite differences. Tests on the scalar one-
and two-dimensional wave equations, the one-dimensional Navier–Stokes solution of a shock and two-dimensional
inviscid compressible vortex verify the accuracy and stability of this class of methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

As structured adaptive mesh refinement (AMR) becomes more popular, in fluid dynamics and other hyper-
bolic systems, there is a need for improved accuracy and stability of the numerical methods [1]. These issues
play an important role when dealing with flow features that are sensitive to numerical dissipation, such as tur-
bulence and general wave-propagation problems. A compelling feature of AMR is the improved computa-
tional performance achieved by the use of relatively simple data structures. This also enables dynamic
adaptivity, since implementation details are not riddled by grids with a large number of topologically different
mesh interfaces. For example, the method of [2,3] is among the most widely used and it consists essentially of a
finite-volume type hierarchical partition of the domain and a logically Cartesian patch-based recursive algo-
rithm. The mesh at different levels is properly nested to avoid an excessive number of mesh-interface types. In
[3], the key simplification in the interface treatment lies in the communication of information from coarse to
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fine meshes through an interpolation/restriction operation on the conservative vector of state. That is, the
coarse vector of state is interpolated to guard fine cells adjacent to the mesh boundary and the vector of state
is restricted (averaged) in the fine mesh to fill guard coarse cells. While this can be made computationally effi-
cient, the simple interpolation operation is not easily extensible to high-order discretizations while at the same
time preserving stability, without introducing artificial numerical dissipation [4–6].

In the development of methods used at mesh interfaces defined by step changes in resolution, the standard
approach used to-date involves choosing the coefficients of the interface stencil by satisfying local stability cri-
teria. This has been utilized in second-order finite-volume (FV) [7,8] and finite-difference (FD) [9] methods.
The stability properties of the interface stencils are analyzed typically by an eigenvalue analysis, where the rig-
orous GKS theory [10] is generally a starting point [11,12]. Unfortunately, as shown by [13], stability must be
analyzed carefully when the mesh includes more than one interface, since there is no guarantee that a single
stable interface treatment will lead to multiple stable interfaces. The presence of multiple interfaces can lead to
algebraic, and even in some cases exponential growth of perturbations even though each individual interface is
locally stable. The only rigorous approach to develop stable multiple-interface treatments is the use of a global
stability criteria. It is largely this reason that makes energy stable methods desirable, since their global stability
domain can be proven in most cases analytically. The recent energy stable second-order method of Ref. [14]
belongs to this category. Moreover, energy stable methods have some desirable numerical properties; they
tend to self diagnose the appropriate resolution (or lack thereof) required by the physical problem at hand.
When the resolution is not sufficient, they generate numerical reflections off the mesh-interface when features
that are well supported on the fine grid side try to propagate over an under-resolved coarse grid. This and
other properties of non-uniform meshes were identified early [15–17] and arise for most methods that are
not overly dissipative. The problem of stability on a grid with continuously variable resolution is discussed
in [16], and is not considered here.

The use of high-order methods with grid resolution jumps is less developed. On one hand, FD methods tend
to be more convenient than finite-volume methods because there is no need to retrieve the interpolant from the
nodal volume averaged values of the FV, nor is there a need for a high-order quadrature to construct the cell
face fluxes. On the other hand, there is an advantage of using a FV mesh topology since there are no overlap-
ping nodes and it is easy to refine/coarsen the solution vector for AMR. Furthermore, high-order FD bound-
ary stencils that are energy stable [18–20] have been derived only recently. The stencils are such that the
boundary discretization satisfies the summation-by-parts (SBP), the GKS stability criteria and the time or
asymptotic stability criteria. High-order interface methods are less mature. Ref. [21] has proposed a high-order
FD interface scheme that uses the stable boundary stencils with a specially adapted penalty technique. This
method requires a common point on both sides of the mesh, essentially a vertex type mesh, and ensures con-
tinuity of the function value and the first derivative, and can be viewed as a one-point overlapping mesh. This
penalty technique does contribute to some numerical dissipation but it does not seem to be as large as with
other methods and it has been used successfully in electromagnetic problems [22]. Related work has also been
done for the elliptic Poisson equation [23], where time stability is not an issue.

The purpose of this paper is to develop a FD interface closure for a structured AMR-type grid that is of
high accuracy and, at the same time, energy stable (non-dissipative and asymptotically stable) for first-order
hyperbolic problems.

2. Interface closure statement

The starting point for this work is the following Cauchy problem, where the solution of the scalar advection
equation
ou
ot
þ k

ou
ox
¼ 0; 0 6 x 6 L; t P 0; ð1Þ
with an initial condition
uðx; 0Þ ¼ f ðxÞ; 0 6 x 6 L; ð2Þ

and the boundary condition at x = 0, for k > 0,
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uð0; tÞ ¼ gðtÞ; t P 0; ð3Þ

is sought numerically.

Consider a partitioning of the spatial domain into M blocks, and that within each block a uniform nodal
discretization of the coordinate x into Nm nodes with spacing hm is performed. Grid interfaces are identified
with the notation 1:rm, representing the interface between blocks with discretization hm and hmþ1, where rm is
the mth interface grid ratio hmþ1=hm. This discretization yields a total of N ¼

PM
m¼1N m nodes, at locations xi,

with i ¼ 1; . . . ;N . Fig. 1 depicts such a grid for a case with a single interface and where the locations of the
nodal values xj, relative to the origin at the interface, are given by
xj ¼
hð1

2
þ jÞ; j < 0;

rhð1
2
þ jÞ; j P 0:

(
ð4Þ
Consider a semi-discretization of Eq. (1) in space using the finite-difference approximation to the first-order
derivative of a function u(x), evaluated at the nodal locations xi,
P
du

dx
¼ 1

h
Qu; ð5Þ
where u is a vector of length N whose elements are ui ¼ uðxiÞ, and P and Q are N � N banded matrices. The
matrix Q is generally a Toeplitz matrix except for small perturbations at the boundaries and interfaces. The
elements of these matrices are determined by solving the order conditions, derived from the Taylor series
expansion of the zth-degree polynomial function
fzðxÞ � xz; ð6Þ
about the point xi, in terms of its value at neighbouring points xj. The parameter h in Eq. (5) denotes the min-
imum value of all given hm. For an approximation of the derivative to order s, the elements pij and qij must
satisfy Eq. (5) with u ¼ fzðxÞ exactly, for z ¼ 0; . . . ; s:
zh
Xiþk

j¼i�k

pijðxj � xiÞz�1 ¼
Xiþk

j¼i�k

qijðxj � xiÞz; ð7Þ
where the stencil has a width of s + 1 points for the interior of the domain, where k ¼ s=2. For a general five-
point centered scheme, away from boundaries, Q is a penta-diagonal matrix, and the derivative approximation
at the interior points i has the familiar form
a
dui�1

dx
þ b

dui

dx
þ a

duiþ1

dx
¼ 1

h
ðbðuiþ1 � ui�1Þ þ aðuiþ2 � ui�2ÞÞ: ð8Þ
For an explicit scheme, P can be chosen as the identity matrix, and for fourth-order accuracy, a ¼ � 1
12

and
b ¼ 2

3
. For the classical fourth-order tri-diagonal Padé scheme with a = 0 and b = 1, the coefficients are

a ¼ 1
4
, and b ¼ 3

4
[24].
Diagram showing an example of a grid interface: here, the four-point interface region lies inside the dashed box, with the interface
etween nodes x�1 and x0. The node numbering scheme is local relative to the interface region.
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3. Summation by parts and stability

According to the theory of [25,18,19], the following conditions must be satisfied for any discretization to be
time or asymptotically stable and preserve the SBP property:

1. There exists a matrix H such that V ¼ HP is symmetric positive definite.
2. W ¼ HQ is an almost skew-symmetric matrix where the only non-zero terms on the diagonal are the first

and last corner terms (for a finite-length domain), generally with w11 < 0 and wNN > 0.
3. Stability requires that the structure of the matrix H at the boundary be that of a restricted or diagonal norm

[18].

It is straightforward to show that under these conditions, the energy norm EðtÞ ¼ k�1ðu;HPuÞ of the semi-
discrete version of Eq. (1) is conserved, and can be changed only by the boundary terms:
dE
dt
¼ k�1 duT

dt
HPuþ uTHP

du

dt

� �
¼ � 1

h
½ðP�1QuÞTHPuþ uTðHQuÞ� ¼ � 1

h
½uT½ðHQÞT þ HQ�u�

¼ � 1

h
w11u2

1 þ wNN u2
N

� �
6 0:
This theory is now used here to develop high-order finite-difference schemes across interfaces where there is a
step change in grid resolution, as shown diagrammatically in Fig. 1. By extension of the SBP property, finite-
difference schemes that span the interface will also be stable, as long as the global structure of the H, P and Q

matrices still follows these conditions. Note that the last point, 3, does not apply to the interface closure, only
to the boundary.

3.1. Order of accuracy

In boundary and interface regions of the domain, the same accuracy conditions Eq. (7) apply, but to order
r 6 s. Because the global convergence rate of a finite-difference scheme can be made equal to that of the inte-
rior scheme if the boundary closure is one order less accurate [26], we typically use r ¼ s� 1. Therefore, to
maintain fourth-order convergence, the boundaries must be third-order accurate, and in [19], a stable
finite-difference approximation is developed at the boundaries that satisfies the order conditions to an accu-
racy one order less than that in the interior. Extending this result to the grid interface problem, the interior
order of accuracy will still be preserved if the interface region is also one order less accurate than the interior
scheme. However, because the result in [26] is an asymptotic convergence of the order of the interior stencil, it
can be expected that the presence of many interface regions could degrade the convergence rate when com-
pared to that of a uniform-grid because of the presence in the domain of several lower-order points; propor-
tional to the number of interfaces.

3.2. Boundary condition

Essential to the stability of the finite-difference approximation is appropriate implementation of the bound-
ary conditions, consistent with the SBP property and time stability. The Simultaneous Approximation Term
(SAT) method described in [19] imposes the boundary condition using a penalty term, of strength s, to enforce
the condition uð0; tÞ ¼ gðtÞ:
P
du

dt
¼ � k

h
ðQu� sSðu1 � gðtÞÞÞ; ð9Þ
where
S ¼ H�1ðw11; 0; . . . ; 0ÞT: ð10Þ

The eigenvalues of the matrix �P�1ðQ� s½S0 . . . 0�Þ must have a negative real part for the overall scheme to be
stable. In practice, this requires for the scalar advection equation that s P 1 [19].
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4. Explicit interface closure

We consider first the interface problem with an explicit scheme of order s = 4 in the interior of the domain,
where the derivative approximation is given by Eq. (5). The matrix P is the identity matrix in the interior
region, while Q must be strictly antisymmetric locally. Furthermore, we observe that up to fourth-order accu-
rate stencils, H can be taken equal to the identity matrix.

4.1. Scheme structure

Consider an n-points wide explicit interface closure with a five-point interior stencil in terms of parameters
b and a. Then, in the region of the interface between grids of resolution h and rh, the local sections of the
matrices P and Q have the form
P ¼

Dp Ap 0

AT
p

bP A
bT
p

0 A
bTT
p rDp

26664
37775; Q ¼

Dq Aq 0

�AT
q

bQ A
bT
q

0 �A
bTT
q Dq

26664
37775; with Aq ¼

0 0 0 . . .

a 0 0 . . .

b a 0 . . .

264
375; ð11Þ
where Dp ¼ I is the identity matrix of size k � k, Dq is the block-diagonal interior part of Q also of size k � k,
and bP and bQ represent the modified interface part of each matrix. For an interface closure of n-points, bP andbQ are square n� n matrices. The matrix Aq represents the overlapping part of Q over the interface stencil and
is of size k � n, and for the explicit case the corresponding part of P, Ap ¼ 0. The superscript bT denotes the
flip-transpose, across the anti-diagonal, or in index notation by abTi;j ¼ an�jþ1;k�iþ1 for Aq ¼ faijg.

The accuracy conditions, Eq. (7), are applied at the interface in terms of the elements of bP , bQ and Aq to
order ri for interface nodes i ¼ �n=2; . . . ; n=2� 1 and for each z ¼ 0; . . . ; ri. The order to which the accuracy
condition is satisfied for node i, ri, is not necessarily the same for all nodes in the interface. The resulting sys-
tem of equations generated by the accuracy conditions is reduced by the symmetry constraints of bP and the
antisymmetric constraints of bQ, but, depending on the size of the particular scheme, elements may remain
unspecified by the accuracy conditions and lead to parametric families of closures. These parameters can
be chosen to reduce the bandwidth of the stencil, and/or to modify the eigenvalues of bP .

4.2. An explicit fourth-order interface closure

A fourth-order closure can be constructed by choosing a ¼ �1=12, b ¼ 2=3 and n = 4, such that the matri-
ces bP and bQ are given by
bP ¼
p11 p12 p13 p14

p12 p22 p23 p24

p13 p23 p33 p34

p14 p24 p34 p44

26664
37775; bQ ¼

0 q12 q13 q14

�q12 0 q23 q24

�q13 �q23 0 q34

�q14 �q24 �q34 0

26664
37775: ð12Þ
Different closure schemes are identified here by the order of accuracy satisfied at each point in the interface
region. We denote in compact form the order of accuracy of the interface closure by r�2–r�1–r0–r1 for
n = 4. The ordering is assumed to be from left to right where the left side contains the fine grid. Thus, a 4–
3–3–4 scheme has four points in the interface closure, the inner two of which satisfy the order conditions
to third-order, and the outer two satisfy the conditions to fourth order. All interface closures considered here
are symmetrically distributed about the grid interface, so a four-point scheme has two points in the coarse
block and two in the fine block. The number of points used for a particular closure depends strongly on
the size of the interior stencil. For a standard fourth-order interior scheme, a minimum of four points are re-
quired in the interface region, because the five-point stencil extends over both blocks for a distance of at least
two points each side.

To maintain the global convergence rate s of the finite-difference scheme used in the interior of the domain,
the order of accuracy at every point in the interface must be r P s� 1. For a four-point interface scheme with
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a fourth-order interior scheme, if each point in the interface is third order, there are a total of 16 equations in
terms of the 16 independent coefficients of bP and bQ. However, the set of equations is not linearly independent
(this particular system has rank 14); they are insufficient to solve for all 16 variables uniquely. Therefore, to
reduce the total truncation error of the scheme, two points can be solved up to fourth-order accuracy, giving
18 equations (in a system of rank 16) in the 16 coefficients, which has a unique solution for each particular
arrangement of third- and fourth-order points across the interface. These solutions satisfy the SBP conditions
on both bP and bQ and are stable for varying ranges of grid ratio, r. It is not possible for a third point in the
four-point interface to be fourth-order; no more coefficients can be added to the matrices while still maintain-
ing their SBP structure.

For the symmetric 4–3–3–4 interface scheme, applying Eq. (7) at the four interface nodes, yields the follow-
ing four matrix equations:
0 0 0 0

1 1 1 1

0 2 3þ r 3þ 3r

0 3 3ð3þrÞ2
4

27ð1þrÞ2
4

0 4 ð3þrÞ2
2

27ð1þrÞ3
2

26666664

37777775
p11

p12

p13

p14

26664
37775 ¼

1 1 1

1 3þr
2

3þ3r
2

1 ð3þrÞ2
4

9ð1þrÞ2
4

1 ð3þrÞ3
8

27ð1þrÞ3
8

1 ð3þrÞ4
16

81ð1þrÞ4
16

2666666664

3777777775
q12

q13

q14

264
375þ

� 7
12

1
2

� 1
3

0
2
3

26666664

37777775; ð13Þ

0 0 0 0

1 1 1 1

�2 0 1þ r 1þ 3r

3 0 3ð1þrÞ2
4

3ð1þ3rÞ2
4

26664
37775

p12

p22

p23

p24

26664
37775 ¼

1 1 1

�1 1þr
2

1þ3r
2

1 ð1þrÞ2
4

ð1þ3rÞ2
4

�1 ð1þrÞ3
8

ð1þ3rÞ3
8

266664
377775
�q12

q13

q14

264
375þ

1
12

� 1
6

1
3

� 2
3

26664
37775; ð14Þ

0 0 0 0

1 1 1 1

�3� r �1� r 0 2r
3ð3þrÞ2

4
3ð1þrÞ2

4
0 3r2

26664
37775

p13

p23

p33

p34

26664
37775 ¼

1 1 1

� 3þr
2

� 1þr
2

r
ð3þrÞ2

4
ð1þrÞ2

4
r2

� ð3þrÞ3
8

� ð1þrÞ3
8

r3

266664
377775
�q13

�q23

q34

264
375�

1
12
r
6

r2

3

2r3

3

266664
377775; ð15Þ

0 0 0 0

1 1 1 1

�3� 3r �1� 3r �2r 0
27ð1þrÞ2

4
3ð1þ3rÞ2

4
3r2 0

� 27ð1þrÞ3
2

� ð1þ3rÞ2
2

�4r3 0

26666664

37777775
p14

p24

p34

p44

26664
37775 ¼ �

1 1 1

� 3þ3r
2

� 1þ3r
2

�r
9ð1þrÞ2

4
ð1þ3rÞ2

4
r2

� 27ð1þrÞ3
8

� ð1þ3rÞ3
8

�r3

81ð1þrÞ4
16

ð1þ3rÞ4
16

r4

2666666664

3777777775
q14

q24

q34

264
375þ

7
12
r
2

r2

3

0

� 2r4

3

26666664

37777775: ð16Þ
Solving this system, the following expressions for the dependence on r of the elements of bP and bQ are
obtained:
p11 ¼
1271r6 � 418r5 � 479r4 þ 28; 676r3 þ 214; 297r2 þ 467; 870r þ 279; 503

31; 104ðr þ 1Þðr þ 3Þ2
;

p22 ¼
1271r6 þ 11; 934r5 þ 9761r4 þ 7812r3 þ 36; 377r2 þ 12; 510r þ 1743

3456ðr þ 1Þð3r þ 1Þ2
;

p33 ¼
1743r6 þ 12; 510r5 þ 36; 377r4 þ 7812r3 þ 9761r2 þ 11; 934r þ 1271

3456r2ðr þ 1Þðr þ 3Þ2
;

p44 ¼
279; 503r6 þ 467; 870r5 þ 214; 297r4 þ 28; 676r3 � 479r2 � 418r þ 1271

31; 104r2ðr þ 1Þð3r þ 1Þ2
;



1464 R.M.J. Kramer et al. / Journal of Computational Physics 226 (2007) 1458–1484
p12 ¼
�1271r6 � 5758r5 þ 1927r4 þ 5372r3 þ 11; 095r2 þ 1154r þ 1305

10; 368ð3r3 þ 13r2 þ 13r þ 3Þ ;

p13 ¼ �
819r6 þ 7982r5 þ 4693r4 þ 4388r3 þ 1213r2 � 16210r þ 1723

10; 368rðr þ 1Þðr þ 3Þ2
;

p14 ¼ �
�1723r6 þ 2642r5 þ 7099r4 þ 7004r3 þ 7099r2 þ 2642r � 1723

31; 104rð3r3 þ 13r2 þ 13r þ 3Þ ;

p23 ¼
819r6 � 2242r5 þ 1485r4 þ 25; 988r3 þ 1485r2 � 2242r þ 819

3456rð3r3 þ 13r2 þ 13r þ 3Þ ;

p24 ¼ �
1723r6 � 16210r5 þ 1213r4 þ 4388r3 þ 4693r2 þ 7982r þ 819

10; 368rðr þ 1Þð3r þ 1Þ2
;

p34 ¼
1305r6 þ 1154r5 þ 11; 095r4 þ 5372r3 þ 1927r2 � 5758r � 1271

10; 368r2ð3r3 þ 13r2 þ 13r þ 3Þ ;

q12 ¼
545r4 � 120r3 þ 2054r2 þ 1368r þ 377

216ð3r3 þ 13r2 þ 13r þ 3Þ ; q13 ¼
�193r4 þ 261r3 � 181r2 þ 195r � 34

216rðr2 þ 4r þ 3Þ ;

q14 ¼
17r4 � 63r3 � 4r2 � 63r þ 17

108rð3r2 þ 10r þ 3Þ ; q23 ¼
193r4 � 282r3 þ 754r2 � 282r þ 193

72rð3r2 þ 10r þ 3Þ ;

q24 ¼
�34r4 þ 195r3 � 181r2 þ 261r � 193

216rð3r2 þ 4r þ 1Þ ; q34 ¼
377r4 þ 1368r3 þ 2054r2 � 120r þ 545

216rð3r3 þ 13r2 þ 13r þ 3Þ : ð17Þ
These matrix elements as functions of r can then be used to impose the last condition, requiring that bP be
positive definite. We have done this numerically and found that, for this 4–3–3–4 scheme, the range of values
of r over which the minimum eigenvalue of bP is positive is 1=rmax < r < rmax, where rmax � 4:551.

If six points are used with a fourth-order interior scheme, there are now up to 36 independent coefficients ofbP and bQ available, but no more than 30 equations (six rows, up to fourth-order accuracy in each). However,
the maximum number of fourth-order points in a six-point interface scheme is five, because it is not possible
algebraically to enforce the order conditions up to fourth-order at all points. Moreover, when comparing four-
and six-point fourth-order interface schemes, it is important to note that although formal accuracy of the six-
point scheme may be better (with a 4–4–3–4–4–4 scheme, or a truncation error-optimized 4–4–3–3–4–4), both
are third-order at every point when implemented in an explicit finite-difference method. The formal accuracy
at each point in the interface is correct for the original construction of Eq. (5), but when this is implemented by
inverting P, every point in the block is reduced to third-order accuracy as the lower-order error is spread
across the interface by the action of bP �1. This implies that, if the number of points in a block is relatively small
compared to the number of interface points, then it is more desirable to minimize the width of the interface
than to force fourth-order accuracy at a maximum number of points. For this reason, four-point interface clo-
sures for fourth-order interior schemes are presented here.

4.3. Inverse grid ratios

The grid ratio in the derivation thus far has been arbitrary. For r > 1, the solution corresponds to an inter-
face between a fine grid and a coarse grid (moving from left to right), and for r < 1 it corresponds to the oppo-
site case. A particular scheme may be solved for any grid ratio, up to the positive definite limit of bP , and, for
some closures, it is possible to derive the corresponding reflected stencil, that for 1=r, directly from the stencil
for r. Writing Eq. (5) for an interface 1

r:1, in terms of the matrices bP and bQ of the 1:r interface, gives
bP du

dx
¼ r

h
bQu;
or, alternatively,
1

r
bP� �

du

dx
¼ 1

h
bQu: ð18Þ
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The scheme for the inverse-ratio interface 1 : 1
r may then be obtained, in the form of Eq. (5), by taking the

transpose of the flip-transpose of the original matrices bP and bQ to give
bP � du

dx
¼ 1

h
bQ�u: ð19Þ
In terms of the elements pi;j of the original matrix, the elements of the transformed matrix bP � are given by
p�i;j ¼
1

r
pnþ1�i;nþ1�j; ð20Þ
and, similarly, the elements of bQ� are given by
q�i;j ¼ �qnþ1�i;nþ1�j; ð21Þ
where n is the width of the interface. Note that the negative sign is necessary to preserve the antisymmetry ofbQ� after the transformation.
Generally, schemes with symmetric accuracy (like 4–3–3–4 or 4–4–3–3–4–4), are preferable to biased

schemes (such as 3–3–4–4 or 4–4–4–3–4–4), as the symmetric schemes behave predictably for both transitions
from a fine to a coarse grid, and from a coarse to a fine grid. If the accuracy conditions are applied symmet-
rically across the interface for a particular grid ratio r, then the stability of the inverse-ratio scheme for a grid
ratio 1=r follows that of the parent scheme. If not, stability for a particular grid ratio does not imply stability
of the inverse-ratio. For example, the fourth-order 4–3–3–4 scheme is stable for practical integer grid ratios in
the range 1

4
6 r 6 4, but the biased 3–3–4–4 scheme, which is stable for r = 8, is unstable for r = 1/8. We sus-

pect that this arises because, for r > 1, the third-order points are in the fine block, where the truncation error is
Oðh3Þ, and the fourth-order points are in the coarse block, with an truncation error of OððrhÞ4Þ. For large r and
small h, the errors on both sides can be comparable in magnitude depending on u. On the other hand, for a
scheme with the third-order points in the coarse block (i.e. for r < 1), the truncation error there would be much
larger than that in the fine block, adversely affecting stability. Unless a strongly directional refinement is nec-
essary, symmetric interface closures are preferred in general.

5. Compact interface closure

For compact (Padé) finite-difference schemes, the first derivative approximation Eq. (5) leads to a matrix P

that is typically tri- or penta-diagonal. This is advantageous computationally, as it can be solved efficiently
using a fast algorithm [27]. In order to retain this computationally efficient structure and satisfy the SBP con-
straints in the interface closure, the matrix H now has a non-trivial form and the matrices V ¼ HP and
W ¼ HQ are introduced. Note that while the accuracy conditions are applied to P and Q as before, the
SBP structure is forced upon V and W instead.

5.1. Scheme structure

The matrices at the interface between grids of spacing h and rh have the form of Eq. (11) and
V ¼

Dv Av 0

AT
v

bV rA
bT
v

0 rA
bTT
v rDv

2664
3775; W ¼

Dw Aw 0

�AT
w

bW A
bT
w

0 �A
bTT
w Dw

2664
3775; ð22Þ
with
Av ¼
0 0 0 . . .

a0 0 0 . . .

b0 a0 0 . . .

264
375 and Aw ¼

0 0 0 . . .

a0 0 0 . . .

b0 a0 0 . . .

264
375: ð23Þ
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The matrix H has the structure
H ¼

Dh Ah 0

AT
h

bH A
bT
h

0 A
bTT
h Dh

2664
3775; with Ah ¼

0 0 0 . . .

0 0 0 . . .

x 0 0 . . .

264
375; ð24Þ
where Dv, Dw and Dh represent the block-diagonal interior part of each matrix, V, W and H, respectively. The
interior part of H, Dh, is a Toeplitz tri-diagonal matrix of diagonal y and sub-diagonals x. The constants x and
y are set by the boundary closure [19], and are considered known a priori. In order to recover P and Q, the
matrices that are actually used by an implementation of the method, we multiply Eq. (11) by Eq. (24) and
equate to Eq. (22). Introducing the generic A,
A ¼
0 0 0 . . .

0 0 0 . . .

1 0 0 . . .

264
375; ð25Þ
to express Ap ¼ aA, Aq ¼ bA, Ah ¼ xA, etc., and applying the SBP constraints leads to the following
relationships
bV ¼ bH bP þ xaðATAþ rA
bTA
bTTÞ; ð26Þ

bW ¼ bH bQ þ xbðATA� A
bTA
bTTÞ; ð27Þ

0 ¼ A bP � 1

r
bP TbT� �

; ð28Þ

0 ¼ Að bH T � bHbTÞ; ð29Þ

0 ¼ AðbQ þ bQTbTÞ; ð30Þ

aATDh þ xbP TAT ¼ xATDp þ a bH AT; ð31Þ

bDhAþ xAbQ ¼ �xDT
q Aþ bA bH T: ð32Þ
The last five conditions reduce to four equations relating the elements of the first and last rows of bP and bQ,
and the first and last columns of bH :
p1j ¼
1

x
ððxb� yaÞd1j þ ahj1Þ; j ¼ 1; . . . ; n; ð33Þ

pnj ¼
r
x
ððxb� yaÞdnj þ ahjnÞ; j ¼ 1; . . . ; n; ð34Þ

q1j ¼ �
1

x
ðybd1j � bhj1Þ; j ¼ 1; . . . ; n; ð35Þ

qnj ¼
1

x
ðybdnj � bhjnÞ; j ¼ 1; . . . ; n; ð36Þ
where dij is the Kronecker Delta. When combined with the accuracy conditions, these equations imply that for
an interface region of n-points, the first and last rows of bP and bQ, and the first and last columns of bH , have the
same values as the interior rows and columns, respectively, of each matrix. In this way, an n-point wide inter-
face in bV and bW is reduced to a width of n � 2 points in bP and bQ.

5.2. A compact fourth-order interface closure

The derivation of the compact scheme follows that of the explicit scheme, and in this case, the problem can
be solved in the same manner, but in terms of bV and bW . For a fourth-order compact closure, we need to con-
sider a six-point wide interface stencil of the type 4–4–3–3–4–4, according to our notation. The symmetry and
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antisymmetry of bV and bW , respectively, is built into the structure of the matrices, and the constants take the
values x ¼ �1=8, y = 1, a0 ¼ �3=32, b0 ¼ 3=4, a0 ¼ �1=32, b0 ¼ 1=8. An equivalent set of equations to (13)–
(16) is obtained, now in terms of the elements of bV and bW . Relating these to the elements of bH , bP and bQ
are an additional 72 equations that arise when the products in Eqs. (26) and (27) are expanded. The resulting
quadratic system for the coefficients of bV , bW , bH , bP and bQ appears to be over-determined, but is not and can
be solved numerically to arbitrary precision. As noted, starting with a six-point stencil for bV and bW , results in
a four-point stencil for bP and bQ. Moreover, we have imposed a tri-diagonal structure for bP to limit the com-
putational cost of an implementation to that of the standard compact method. This gives matrices of the fol-
lowing forms:
Table
Coeffic

h12

h13

h14

h15

h23

h24

h25

h32

h34

h35

h42

h43

h45

h52

h53

h54

h62

h63

h64

h65
bH ¼
y h12 h13 h14 h15 0

x y h23 h24 h25 0

0 h32 y h34 h35 0

0 h42 h43 y h45 0

0 h52 h53 h54 y x

0 h62 h63 h64 h65 y

2666666664

3777777775
; ð37Þ

bP ¼
b a 0 0 0 0

p21 p22 p23 0 0 0

0 p32 p33 p34 0 0

0 0 p43 p44 p45 0

0 0 0 p54 p55 p56

0 0 0 0 ra rb

2666666664

3777777775
; bQ ¼

0 b 0 0 0 0

q21 q22 q23 q24 q25 q26

q31 q32 q33 q34 q35 q36

q41 q42 q43 q44 q45 q46

q51 q52 q53 q54 q55 q56

0 0 0 0 �b 0

2666666664

3777777775
: ð38Þ
We reproduce here the matrices bH , bP and bQ (from which bV and bW can be obtained) for a grid ratio of r = 2
(Tables 1–3).

The scheme for the inverse-ratio r ¼ 1=2 is developed from this one by the same procedure described for the
explicit scheme. Fig. 2 shows the eigenvalue distributions of the matrix �P�1ðQ� sSÞ for a domain of 24
points, having two blocks of 12 points each, with an interface between them of a grid ratio r = 2. The bound-
ary closure used is that given in Appendix A for the compact fourth-order scheme. The sS term represents the
1
ients of bH ¼ fhijg for r = 2

�0.1232402484784899710164397916
�0.31333152752131113246166446 · 10�1

0.852699719853406947164212398943596 · 10�5

0.11860746785502789792431677280958178 · 10�3

0.618790491943648059695025274 · 10�1

�0.306582379143300475030344636 · 10�1

0.40803323223721328264783822 · 10�2

�0.140285582423798758131420399
0.523925580024450796111532835 · 10�1

�0.129693862192012822570192023 · 10�1

0.102043065749984205402236973 · 10�1

�0.14702252987201355569786227229 · 101

�0.1157524966745825658230467757
0.9201234527565284915243736 · 10�3

�0.1989659562666639907709629149
0.135953314949231126429124192
0.24615372487607313952940444615678953 · 10�3

0.411752307653865095760004609 · 10�1

�0.306859565803772423696882572 · 10�1

�0.1254390170160080423599534078



Table 2
Coefficients of bP ¼ fpijg for r = 2

p21 0.2424978853301560587789396958
p22 0.10640904422802678172053899804 · 101

p23 �0.1326286761650141070117363483
p32 0.435112345834630548124110665 · 10�1

p33 0.16080204802894215484872562126 · 101

p34 �0.783478740362225424706274305 · 10�1

p43 0.23693277906826704860554383099 · 101

p44 0.15811943105460698424384038897 · 101

p45 0.4960717311072315313813018904
p54 0.51885613705189044164467563 · 10�1

p55 0.18455666682157422259993738106 · 101

p56 0.5032714956999991535950428443

Table 3
Coefficients of bQ ¼ fqijg for r = 2

q21 �0.761257769992343299471159655
q22 0.1143257794062328234604753202
q23 0.8473171572700174665410351197
q24 �0.2396013252232296836437543025
q25 0.452584966322365741016381874 · 10�1

q26 �0.6042338092914088711432468 · 10�2

q31 0.21663489405658970067492337 · 10�2

q32 �0.8106392981057847846842810024
q33 0.1544617054854031383542181672
q34 0.7709661357995375997165460529
q35 �0.1268399717855863009275906973
q36 0.98850796658644744251896719 · 10�2

q41 0.58847563645372666838194635 · 10�2

q42 �0.9716362587900950195355361978
q43 �0.6254359473905259584541443387
q44 0.10517496144007288832802015216 · 101

q45 0.5289027150552972270764104422
q46 0.105351203600576993057581472 · 10�1

q51 0.19529371529603868685573564 · 10�2

q52 �0.497131047203482777955790797 · 10�1

q53 0.217985291042018160129483074
q54 �0.7273214030388623889107468022
q55 �0.1909345570807599556942974209
q56 0.7480308366449920765350051948
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application of the boundary condition for the advection equation by the SAT method, applied here at the
upstream boundary in the first block. For this demonstration, a value s = 2 was used. We observe that the
real part of each eigenvalue is indeed negative, so the scheme is guaranteed to be time stable.

6. Test examples

We describe four test cases, one linear and one nonlinear in both 1D and 2D. In all cases we use explicit
third-order Runge–Kutta time integration with the maximum time step determined from a CFL-type condi-
tion of the form
uDt
h
6 1; ð39Þ
where h denotes the smallest grid spacing and u is the appropriate convection speed.
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Fig. 2. Eigenvalues of �P�1ðQ� sSÞ for a 24-point domain, two blocks of 12 points each, first block with discretization h and the second
with rh, for r ¼ 2.
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6.1. Advection equation

The boundary and interface schemes described here were tested with the linear advection equation, Eq. (1).
Stability and convergence were tested by comparing the solution after multiple domain transition times with
the analytic solution. Results are presented for the specific advection problem where
uð0; tÞ ¼ � sin
2pkt

L
; t P 0; ð40Þ

uðx; 0Þ ¼ sin
2px
L
; 0 6 x 6 L; ð41Þ
with k > 0, whose exact solution is
uðx; tÞ ¼ sin
2p
L
ðx� ktÞ; 0 6 x 6 L; t P 0: ð42Þ
The boundary condition, Eq. (40), is applied by the SAT method, with s = 2, at the first node in the domain.
As shown in Fig. 1, nodes are placed at the center of elements of width Dx, so the first node is at Dx

2
, and the

boundary condition is correspondingly adjusted. Under refinement, the width of each element (equivalent to
the nodal spacing) is reduced and the number of nodes increased by the factor of refinement such that the
physical location of the interfaces is fixed in space.

This problem is solved here using a fourth-order finite-difference scheme on a three-block grid, with 20
points in the first block and 10 in each of the subsequent blocks for the coarsest case. The first interface
has r = 4 and the second r ¼ 1=2. Five steps of global refinement are performed for the convergence test, from
h ¼ 0:1 to 0.0125. Solutions are presented for the case with h ¼ 0:05, after two wave transitions through the
domain T ¼ 2 L

k

� �
. Fig. 3 shows a solution and the convergence results of the explicit scheme, using the four-

point 4–3–3–4 interface closure described in Section 4 and the four-point 3–3–4–4 boundary closure given in
Appendix A. The advertised fourth-order convergence rate clearly has been achieved, in both an averaged
sense and uniformly, as evidenced by the slope of the L1 norm.

Fig. 4 shows a solution and the convergence study of the compact scheme, using the four-point interface
closure derived in Section 5 with r = 2 and r ¼ 1=2, and the four-point boundary closure given in Appendix
A. This was tested on a three block 2:1:2 grid, with a minimum of 20 points in each block, the first interface
having r = 2 and the second r ¼ 1=2. Again, five steps of refinement were performed, over the same range of
discretizations h, and the other solution parameters follow those used for the explicit test. The advertised
fourth-order convergence rate clearly has again been achieved, in both an averaged sense and uniformly.
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Fig. 3. Advection equation solved with an explicit finite-difference scheme: (a) the numerical solution and error relative to the exact
solution after two wave transitions for h ¼ 0:05 and (b) a plot of the error convergence by L1, L2 and L1 norms. See text for description of
the grid.
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6.2. Navier–Stokes shock

To demonstrate the methods described here applied to a nonlinear problem, the one-dimensional compress-
ible Navier–Stokes equations were solved for the flow through a shock. This problem can be solved analyti-
cally for the special case of constant viscosity with Prandtl number Pr ¼ 3=4, so an accurate measure of error
in the numerical solution can be made. In terms of dimensionless variables �q, �u and �p normalised by the
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the grid.
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upstream flow states q0, u0 and p0, and non-dimensional space n ¼ x=k0 and time �t, the Navier–Stokes equa-
tions reduce to
o�q
o�t
þ o

on
ð�q�uÞ ¼ 0; ð43Þ
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o

o�t
ð�q�uÞ þ o

on
�q�u2 þ 1

a1

�p � a3

o�u
on

� �
¼ 0; ð44Þ

o

o�t
ð�p þ a1a2�q�u2Þ þ o

on
a1a2�q�u3 þ c�p�u� 2a1a2a3�u

o�u
on
� ca3

o

on
�p
�q

� �� �
¼ 0; ð45Þ
with parameters a1 ¼ cM2
0, a2 ¼ c�1

2
and a3 ¼ 4

3
kffiffiffiffiffiffi
cM2

0

p , where k ¼ 5
8

ffiffi
p
2

p
, derived from the kinetic theory constant

k1 ¼ 5p
32

, c is the ratio of specific heats, M0 is the upstream Mach number and k0 is the upstream mean free path.
This formulation reduces the number of problem parameters to c and M0.

For steady flow with o=o�t � 0 in the frame of reference where the shock is stationary, and uniform
upstream and downstream conditions such that �u ¼ 1 upstream, the closed-form solution for the velocity pro-
file through the shock is
nð�uÞ ¼ 1

k2ð1� a1ÞM0

log

ffiffiffiffiffi
a1
p � a1

�u� a1

� �a1 �u� 1ffiffiffiffiffi
a1
p � 1

� �
; ð46Þ
where the velocity ratio a1ðM0; cÞ across the shock is given by the Rankine–Hugoniot relation
a1 ¼
2þ ðc� 1ÞM2

0

ðcþ 1ÞM2
0

; ð47Þ
and the constant k2 is given by
k2 ¼
3ðcþ 1Þ

8k1

ffiffiffiffiffi
p
8c

r
: ð48Þ
In obtaining (46), n ¼ 0 is chosen to correspond to the velocity inflection point, d2�u=dn2 ¼ 0, which fixes the
shock in space. For given c and M0, (46) can be solved numerically for �u at each n to arbitrary precision; this
gives the velocity profile through the shock, and subsequently the density and pressure profiles. We then pro-
ceed to solve (43)–(45) numerically as an initial-boundary-value problem using our interface schemes and con-
sider convergence to Eq. (46).

As for the advection problem, a fourth-order finite-difference method is applied in the interior of the
domain, with the four-point boundary and interface schemes described in this paper, for both explicit and
compact stencils. Second derivatives are evaluated by applying the first derivative twice. The boundary con-
ditions of the Navier–Stokes equations in compressible form must be carefully formulated, and are applied
here in characteristic form, shown in Appendix B. Implementation is by the same SAT method described
for the advection equation, with the parameter s chosen appropriately for stability. Unlike the scalar advec-
tion equation or linear hyperbolic systems of equations, for this problem the stability bounds on s are not as
clear, but for a CFL number small enough, s ¼ 2 was found to give stable solutions.

The shock problem was solved numerically on three representative domains: a uniform-grid, a three-block
1:4:1 grid with refinement in the vicinity of the shock, and a five-block 1:4:2:4:1 grid, with two levels of refine-
ment near the shock, the interfaces of which are shown by the dashed lines in Fig. 5. The interfaces of the
three-block grid have grid ratios r1 ¼ 4 and r2 ¼ 1=4, and the five-block grid has r1 ¼ 4, r2 ¼ 2, r3 ¼ 1=2
and r4 ¼ 1=4, moving from left to right across the domain. The numerical domain extended upstream of
the shock to n ¼ �25 and downstream to n ¼ 10, at which point the difference between the analytic solution
and the Rankine–Hugoniot conditions is of the order of machine precision (10�16) for the chosen shock
parameters. The initial condition used is the analytic solution, evaluated at the nodal positions. The discrete
form of the Navier–Stokes equations is not identically satisfied by the continuous solution for finite h, so a
third-order Runge–Kutta method is used to step the unsteady equations through time to obtain the steady
numerical solution of the shock problem.

Results are presented here for a Mach 2.2 shock, with c ¼ 1:4. Convergence of the numerical solution error
compared to the analytic solution, plotted against the minimum grid discretization h, shows the expected
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Fig. 5. Navier–Stokes shock solution, showing the locations of the interfaces in the five-block grid as dashed lines.
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fourth-order slope in all three cases. Fig. 6 compares the convergence rates of the uniform-grid and three-
block grid solutions, where the slope of the L1 norm indicates that the uniform-grid solution is uniformly
fourth-order convergent, and the three-block grid solution approaches this limit. Here the asymptotic nature
of the convergence described in [26] is apparent, as there are an increased number of third-order points in the
three-block grid, introduced by the interface schemes, compared to the uniform-grid. This is also apparent in
the similar convergence plot for the five-block grid.

Fig. 7 shows the numerical solutions for comparable uniform and three-block grids, with a plot of the error
compared to the analytic solution Eq. (46). For the uniform-grid, the discretization of the solution shown is
h ¼ 1=16, for a total of 560 points in the domain, while for the three-block grid, the solution shown has the
same discretization of h ¼ 1=16 in the refined region of the shock, and 1/4 elsewhere, for a total of 200 points.
With the same time step size, the computational cost of the three-block grid is approximately half that of the
uniform-grid. Fig. 8 shows the behavior of the error in the time derivative terms of the equations of motion, in
the form of the L2 norm of the time derivative at each time step, for each of the continuity, momentum and
energy equations, and a total norm of the three equation norms. Some oscillatory behavior is observed in the
solution during the transient phase, but for long times the solution appears to be converging to a stable state.

The shock problem was also solved on a three-block 1:2:1 grid using the compact finite-difference scheme
described in Section 5. Results from this test are shown in Fig. 9, showing (a), the solution at the final time step
for a 400-point grid with smallest discretization h ¼ 1=20, and (b), that near-fourth-order convergence is
achieved.

6.3. 2D advection equation

Although the interface closure is developed here in a one-dimensional sense, it may be applied to certain
two-dimensional grids, if the refinement is designed in such a way that it may be represented as a tensor prod-
uct of 1D grids. A two-dimensional patch-refined grid in the sense of AMR, with cell-centered nodes, cannot
be solved with this closure, because under refinement in both directions, nodes are no longer aligned across the
interfaces, resulting in hanging nodes so derivatives in both directions must be considered simultaneously
when building an interface scheme. This is the subject of ongoing research. Fig. 10 shows the type of
locally-refined grid that can be solved with the current scheme.
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The two-dimensional scalar advection equation,
ou
ot
þ k1

ou
ox
þ k2

ou
oy
¼ 0; 0 6 x 6 1; 0 6 y 6 1; t P 0; ð49Þ

uð0; y; tÞ ¼ sin½xðy=k2 � 2tÞ�; ð50Þ
uðx; 0; tÞ ¼ sin½xðx=k1 � 2tÞ�; ð51Þ
uðx; y; 0Þ ¼ sin½xðx=k1 þ y=k2Þ�; ð52Þ
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Fig. 7. Numerical Navier–Stokes shock velocity solution, normalized by the upstream velocity, and the corresponding point-wise error.
Both uniform and three-block grids shown here have the same minimum discretization, h ¼ 1=16, for a total of 560 points and 200 points,
respectively.
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where k1 and k2 represent the advection speeds in the x- and y-directions, respectively, and x is a frequency
parameter, has analytic solution
uðx; y; tÞ ¼ sin½xðx=k1 þ y=k2 � 2tÞ�; ð53Þ
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Fig. 8. Behavior of the time derivatives of the equations of motion for the numerical solution for the grids shown in Fig. 7.
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and is solved here by a similar implementation as used for the 1D advection equation. The grid used is a
unit square with each direction identically divided into five blocks, for a total of 25 blocks, with a factor
of two refinement between each block for an overall 4:2:1:2:4 scheme (r = 2 for the first two interfaces,
r ¼ 1=2 for the next two). In each direction, the first and last blocks have a minimum of 10 points each,
and each of the three remaining blocks has 8 points. Three steps of global refinement were performed for
the convergence tests, from h ¼ 1=120 to 1/360. The same discretization was used in both x- and y-
directions.
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Fig. 9. Navier–Stokes shock velocity solution using compact finite-difference scheme: (a) solution at the final time step on a three-block
1:2:1 grid with minimum discretization h ¼ 1=20 and (b) convergence plot.
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Both fourth-order explicit and compact schemes were tested on this grid. Boundary conditions
were implemented by the SAT method, using the same boundary closures as before. The test problem
uses parameter values k1 ¼ k2 ¼ 1=4 and x ¼ p=2, and was run to time T = 10. Fig. 11 shows that
both average and uniform fourth-order convergence is achieved, for both explicit and compact
schemes.



Fig. 10. An example of the type of local refinement on a two-dimensional grid that may be solved using the interface closure scheme
presented here. This grid has one level of refinement in each direction.
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6.4. 2D inviscid compressible vortex

For the final example, a nonlinear problem is solved on a similar locally-refined two-dimensional grid.
Here, the dimensionless compressible Euler equations,
oq
ot
þ o

ox
ðquÞ þ o

oy
ðqvÞ ¼ 0; ð54Þ

o

ot
ðquÞ þ o

ox
qu2 þ p

cM2
0

� �
þ o

oy
ðquvÞ ¼ 0; ð55Þ
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qv2 þ p

cM2
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� �
¼ 0; ð56Þ
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þ c� 1

2
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� �
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pu

M2
0

þ c� 1
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� �
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pv
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þ c� 1

2
qvðu2 þ v2Þ

� �
¼ 0; ð57Þ
are used with a normalization in terms of far-field values, q0 and p0, and a velocity scale, u0, which are incor-
porated into the Mach number, M0. An analytic solution exists for a constant-entropy vortex with the tangen-
tial velocity profile
uh

u0

¼ r0

r
1� e

�r2

r2
0

 !
; ð58Þ
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Fig. 11. Convergence plots for the 2D advection equation, using both explicit and compact schemes, showing that fourth-order
convergence has been achieved.
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and r0 is the core radius of the vortex. The corresponding pressure distribution is given by
p
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� �24 350@ 1A c
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where EiðzÞ is the exponential integral function and the density is related to pressure by p=p0 ¼ ðq=q0Þ
c. Anal-

ysis shows that, for c ¼ 1:4, as long as M0 is less than approximately 1.35, the flow is subsonic everywhere
(based on local Mach number), and for M0 < 1:9, there is no evacuation at the core of the vortex. Parameter
values of M0 ¼ 1:2 and r0 ¼ 4=25 were chosen for our test.

The discretized problem is solved on a grid similar to that used for the advection problem of Section 6.3, in
a domain of side length 4. The same 4:2:1:2:4 refinement in each direction is used, now with a minimum of 14
points in the coarse blocks, 16 in the intermediate blocks and 24 in the most refined central block for an
84� 84-node grid at the largest minimum discretization ðh ¼ 1=50Þ. Five steps of global refinement were
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Fig. 12. Compressible vortex solution for a static centered vortex: (a) contours of vorticity for h ¼ 1=100 and (b) convergence plot
showing that fourth-order convergence is achieved.
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Fig. 13. Compressible vortex solution for a vortex convecting across the domain: plots (a) and (b) show for h ¼ 1=150 contours of
vorticity with the grid interfaces marked with dashed lines, at the beginning and end of the simulation, respectively, and plot (c) shows that
fourth-order convergence is again achieved.
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performed for the convergence test, down to h ¼ 1=150 and a 252� 252-node grid. Exact boundary conditions
are applied on all edges, using the analytic solution (58) and (59), with the explicit finite-difference scheme.
Results are given at time t ¼ 2 for both a static vortex located at the center of the domain (Fig. 12), and
for a vortex convecting across the domain with speed (0.35, 0.55). The initial condition for the convecting vor-
tex is such that at t ¼ 1, the core is centered in the domain, and it thus moves from one side of the most refined
region to the other during the simulation. This is shown in the vorticity contour plots of Fig. 13, where the grid
interfaces are indicated by dashed lines. Convergence plots, shown in Figs. 12(b) and 13(c), demonstrate that
fourth-order convergence is obtained for both examples.

7. Conclusions

We present an extension of the stable boundary closure theory for high-order finite-difference approxi-
mations to the case of step resolution changes at grid interfaces, which appear in adaptive mesh refinement.
The closures are energy stable and satisfy the summation-by-parts condition by construction, while main-



1482 R.M.J. Kramer et al. / Journal of Computational Physics 226 (2007) 1458–1484
taining the global order of accuracy of the interior scheme and avoiding numerical dissipation. This has
been achieved for both explicit and compact interior schemes, to fourth-order and for large grid ratios
in one dimension.

Numerical tests of these schemes using the scalar advection equation confirms that the global order of accu-
racy, s, of the interior finite-difference approximation is maintained when the interface scheme is of order
r P s� 1. This is shown in one dimension, and for the two-dimensional case on an appropriately refined grid.
Applications of this method to the one-dimensional compressible Navier–Stokes equations to solve the shock
structure problem, and to the two-dimensional compressible Euler equations to solve the vortex problem,
show that the method is applicable to nonlinear systems of equations, giving stable results with the expected
convergence rate as the spatial discretization is refined.
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Appendix A. Stable boundary schemes

A.1. Explicit fourth-order boundary closure

The boundary closure derivation follows the theory of [18], but was applied here in a form analogous to
that used for the interface schemes. Four points are sufficient to close the boundary problem to third-order
at the outer two points and fourth-order at the inner two points, without free parameters. The scheme is
described here as 3–3–4–4, following the naming convention given to the interface schemes, where the numbers
refer to the order of accuracy at each point, and the domain end being at the left-hand side. Given here are the
first six rows and columns of the P and Q matrices of this boundary scheme:
P ¼

2429
10;368

469
3456

� 113
1152

277
10;368

0 0

469
3456

4871
3456

� 721
3456

205
3456

0 0

� 113
1152

� 721
3456

3623
3456

� 43
3456

0 0
277

10;368
205
3456

� 43
3456

10;397
10;368

0 0

0 0 0 0 1 0

0 0 0 0 0 1

26666666664

37777777775
; ðA:1Þ

Q ¼

� 1
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432

0 0

� 167
216

0 133
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432

0 0
149
432

� 133
144

0 143
216

� 1
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432
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432
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216

0 2
3
� 1

12

0 0 1
12

� 2
3

0 2
3

0 0 0 1
12

� 2
3

0

2666666664

3777777775
: ðA:2Þ
The right-hand boundary is obtained from the left by the transpose/flip-transpose transformation. The sum-
mation-by-parts constraints are met by the boundary closure when combined with the SAT method for appli-
cation of the boundary conditions.

A.2. Compact fourth-order boundary closure

The four-point compact boundary closure used in this work is that developed in [19], and is presented here
for completeness. This scheme has third-order accuracy at each of the four points of the boundary region, and
has P tri-diagonal to preserve the efficient structure of the interior scheme. Reproduced below are the four
rows and columns of the boundary part of the H, P and Q matrices from [19]:
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H ¼

70;282;007;653
7;658;388;480

� 9;426;299
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0
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2666664
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P ¼
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26664
37775; Q ¼

� 289
234

279
286

75
286

� 7
2574

� 8635
3376

6987
3376

1851
3376

� 203
3376

� 15;043
18;972

� 4089
2108

147
124

29;353
18;972

0 0 � 3
4

0

266664
377775: ðA:4Þ
As for the explicit scheme, the right-hand boundary scheme is obtained by transformation of the above left-
hand side matrices.

Appendix B. Boundary conditions for the Navier–Stokes shock

Following from the dimensionless formulation of the Navier–Stokes Eqs. (43)–(45), the conserved vector of
state U is given by
U ¼ ½�q; �q�u; �p þ a1a2�q�u2�T; ðB:1Þ

and the characteristic variable vector W, from the corresponding Euler (inviscid) form of the equations, is gi-
ven by
W ¼ �u� 2

c� 1
c�;

�p
�qc
; �uþ 2

c� 1
c�

� �T

; ðB:2Þ
where c� is the modified sound speed given by c� ¼ 1
M0

ffiffi
�p
�q

q
. The components of W correspond to the charac-

teristics k1 ¼ �u� c�, k2 ¼ �u and k3 ¼ �uþ c�.
For a supersonic inlet and subsonic outlet, all the characteristics upstream of the shock must be specified,

along with the incoming characteristic downstream. The final boundary condition, to close the problem, is to
specify a zero temperature gradient at the downstream end. The resulting system of equations to be solved,
with the terms due to the application of the boundary conditions by the SAT method included, is then given
in terms of the conserved vector of state U by
oU 1
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¼ � oF 1ðUÞ
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where the SAT penalty terms have the form
B1 ¼ sSL½w1
1 � g1ð�tÞ�;�sSR½wN

1 � h1ð�tÞ�;
B2 ¼ sSL½w1

2 � g2ð�tÞ�;
B3 ¼ sSL½w1

3 � g3ð�tÞ�;

the parameters a1 and a2 are defined as before, F ðUÞ is the vector of fluxes, and gð�tÞ is the vector of boundary
data at the upstream end and hð�tÞ is the boundary data at the downstream end.
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